
pyAS2 Documentation
Release 0.4.0

Abhishek Ram

Jun 07, 2018

Contents

1 Features 3

2 Dependencies 5

3 Installation 7

4 Table of Contents: 9
4.1 Installation . 9
4.2 Configuration . 11
4.3 Quick-start Guide . 12
4.4 Detailed Guide . 17
4.5 Release History . 27

i

ii

pyAS2 Documentation, Release 0.4.0

pyAS2 is an AS2 server/client written in python and built on the Django framework. The application supports AS2
version 1.2 as defined in the RFC 4130. Our goal is to provide a native python library for implementing the AS2
protocol. It supports Python 2.6-2.7.

The application includes a server for receiving files from partners, a front-end web interface for configuration and
monitoring, a set of django-admin commands that serves as a client for sending messages, asynchronous MDNs
and a daemon process that monitors directories and sends files to partners when they are placed in the partner’s watched
directory.

Contents 1

https://www.djangoproject.com/
https://www.ietf.org/rfc/rfc4130.txt

pyAS2 Documentation, Release 0.4.0

2 Contents

CHAPTER 1

Features

• Technical

– Asynchronous and synchronous MDN

– Partner and Organization management

– Digital signatures

– Message encryption

– Secure transport (SSL)

– Support for SSL client authentication

– System task to auto clear old log entries

– Data compression (AS2 1.1)

– Multinational support: Uses Django’s internationalization feature

• Integration

– Easy integration to existing systems, using a partner based file system interface

– Daemon Process picks up data from directories when it becomes available

– Message post processing (scripting on receipt)

• Monitoring

– Web interface for transaction monitoring

– Email event notification

• The following encryption algorithms are supported:

– Triple DES

– DES

– RC2-40

– AES-128

3

pyAS2 Documentation, Release 0.4.0

– AES-192

– AES-256

• The following hash algorithms are supported:

– SHA-1

4 Chapter 1. Features

CHAPTER 2

Dependencies

• Python (2.6.5+, 2.7+)

• Django (1.7+)

• M2Crypto (This is dependent on openssl.)

• requests

• pyasn1

• cherrypy

• pyinotify on *nix (Optional for using the send daemon)

• Python for Windows extensions (pywin) for windows (Optional for using the send daemon)

5

https://wiki.openssl.org/index.php/Compilation_and_Installation

pyAS2 Documentation, Release 0.4.0

6 Chapter 2. Dependencies

CHAPTER 3

Installation

You can install pyAS2 with pip:

$ pip install pyas2

See Installation for more information.

7

pyAS2 Documentation, Release 0.4.0

8 Chapter 3. Installation

CHAPTER 4

Table of Contents:

4.1 Installation

Fisrt Install M2Crypto separately following these instructions

Install using pip. . .

$ pip install pyas2

Create a new django project

$ django-admin.py startproject django_pyas2

Add pyas2 to your INSTALLED_APPS setting, ensure that pyas2 is placed at the top of this list.

INSTALLED_APPS = (
'pyas2',
...

)

Include the pyAS2 URL configuration in your project’s urls.py.

from django.conf.urls import include #add only if django version >= 1.9
url(r'^pyas2/', include('pyas2.urls')),

Run the following commands to complete the installation and start the server.

$ python manage.py migrate
Operations to perform:

Apply all migrations: pyas2, admin, contenttypes, auth, sessions
Running migrations:

Applying contenttypes.0001_initial... OK
Applying auth.0001_initial... OK
Applying admin.0001_initial... OK

(continues on next page)

9

https://gitlab.com/m2crypto/m2crypto/blob/master/INSTALL.rst

pyAS2 Documentation, Release 0.4.0

(continued from previous page)

Applying admin.0002_logentry_remove_auto_add... OK
Applying contenttypes.0002_remove_content_type_name... OK
Applying auth.0002_alter_permission_name_max_length... OK
Applying auth.0003_alter_user_email_max_length... OK
Applying auth.0004_alter_user_username_opts... OK
Applying auth.0005_alter_user_last_login_null... OK
Applying auth.0006_require_contenttypes_0002... OK
Applying auth.0007_alter_validators_add_error_messages... OK
Applying auth.0008_alter_user_username_max_length... OK
Applying pyas2.0001_initial... OK
Applying pyas2.0002_partner_compress... OK
Applying pyas2.0003_auto_20150311_1141... OK
Applying pyas2.0004_auto_20150311_1258... OK
Applying pyas2.0005_message_compressed... OK
Applying pyas2.0006_auto_20150313_0548... OK
Applying pyas2.0007_auto_20150313_0707... OK
Applying pyas2.0008_auto_20150317_0450... OK
Applying pyas2.0009_auto_20150317_1324... OK
Applying pyas2.0010_auto_20150416_0745... OK
Applying pyas2.0011_auto_20150427_1029... OK
Applying pyas2.0012_auto_20151006_0526... OK
Applying pyas2.0013_auto_20160307_0233... OK
Applying pyas2.0014_auto_20160420_0515... OK
Applying pyas2.0015_auto_20160615_0409... OK
Applying pyas2.0016_auto_20161004_0543... OK
Applying sessions.0001_initial... OK

$ python manage.py createsuperuser
Username (leave blank to use 'abhishekram'): admin
Email address: admin@domain.com
Password:
Password (again):
Superuser created successfully.
$ python manage.py runas2server
20150908 07:14:32 Level 25 : PyAS2 server running at port: "8080".
20150908 07:14:32 Level 25 : PyAS2 server uses plain http (no ssl).

The pyAS2 server is now up and running, the web UI for configuration and monitoring can be accessed at http://
{hostname}:8080/pyas2/ and the endpoint for receiving AS2 messages from your partners will be at http:/
/{hostname}:8080/pyas2/as2receive

4.1.1 Upgrading pyAS2

Upgrading to the latest version of pyAS2 is a straight forward procedure. We will use pip to update the package
to the latest version and django’s migrations framework to migrate the database to reflect any changes made to the
models.

Run the following commands to upgrade to the latest version:

$ pip install -U pyas2
$ python manage.py migrate
Operations to perform:

Apply all migrations: admin, pyas2, contenttypes, auth, sessions
Running migrations:

Applying pyas2.0017_auto_20170404_0730... OK

10 Chapter 4. Table of Contents:

https://docs.djangoproject.com/en/1.8/topics/migrations/

pyAS2 Documentation, Release 0.4.0

Warning: A major change has been made to pyAS2, starting version 0.3.4 the migrations are included in the
repo so if you are upgrading from an older version you need to fake till the last migration done and then finally do
migrations. So suppose you were at 0.3.2 you would follow these steps:

$ python manage.py migrate --fake pyas2 0016
Operations to perform:

Target specific migration: 0016_auto_20161004_0543, from pyas2
Running migrations:

Applying pyas2.0002_partner_compress... FAKED
Applying pyas2.0003_auto_20150311_1141... FAKED
Applying pyas2.0004_auto_20150311_1258... FAKED
Applying pyas2.0005_message_compressed... FAKED
Applying pyas2.0006_auto_20150313_0548... FAKED
Applying pyas2.0007_auto_20150313_0707... FAKED
Applying pyas2.0008_auto_20150317_0450... FAKED
Applying pyas2.0009_auto_20150317_1324... FAKED
Applying pyas2.0010_auto_20150416_0745... FAKED
Applying pyas2.0011_auto_20150427_1029... FAKED
Applying pyas2.0012_auto_20151006_0526... FAKED
Applying pyas2.0013_auto_20160307_0233... FAKED
Applying pyas2.0014_auto_20160420_0515... FAKED
Applying pyas2.0015_auto_20160615_0409... FAKED
Applying pyas2.0016_auto_20161004_0543... FAKED

$ python manage.py migrate pyas2
Operations to perform:

Apply all migrations: pyas2
Running migrations:

Applying pyas2.0017_auto_20170404_0730... OK

4.2 Configuration

The global settings for pyAS2 are kept in a single configuration dictionary named PYAS2 in your project’s settings.py
module. Below is a sample configuration:

PYAS2 = {
'ENVIRONMENT' : 'production',
'PORT' : 8888,
'SSLCERTIFICATE' : '/path_to_cert/server_cert.pem',
'SSLPRIVATEKEY' : '/path_to_cert/server_privkey.pem',
'DATADIR' : '/path_to_datadir/data',
'PYTHONPATH' : '/path_to_python/python',
'ENVIRONMENTTEXT' : 'BETA',
'ENVIRONMENTTEXTCOLOR' : 'Yellow',
'LOGLEVEL' : 'DEBUG',
'LOGCONSOLE' : True,
'LOGCONSOLELEVEL' : 'DEBUG',
'MAXRETRIES': 5,
'MDNURL' : 'https://192.168.1.115:8888/pyas2/as2receive',
'ASYNCMDNWAIT' : 30,
'MAXARCHDAYS' : 30,

}

The available settings along with their usage is described below:

4.2. Configuration 11

https://docs.djangoproject.com/en/1.8/ref/settings/

pyAS2 Documentation, Release 0.4.0

Settings Name Default Value Usage
ENVIRONMENT production The as2 server in development or production
PORT 8080 HTTP Port as2 server listens on
SSLCERTIFICATE None Path to the SSL Public Key
SSLPRIVATEKEY None Path to the SSL Private Key
DATADIR Django

Project
Path

Full path to the base directory for storing messages, MDNs, certifi-
cates and logs

PYTHONPATH System
Python Path

Path to the python executable, required with virtual environments

ENVIRONMENT-
TEXT

None Text displayed on right of the logo. Useful to indicate different envi-
ronments.

ENVIRONMENT-
TEXTCOLOR

Black Color of the displayed PYTHONPATH. Use HTML valid “color
name” or #RGB values.

LOGLEVEL INFO Level for logging to log file. Values: DE-
BUG,INFO,STARTINFO,WARNING,ERROR or CRITICAL.

LOGCONSOLE True Console logging on (True) or off (False).
LOGCON-
SOLELEVEL

STARTINFO level for logging to console/screen. Values: DE-
BUG,INFO,STARTINFO,WARNING,ERROR or CRITICAL.

MAXRETRIES 10 Maximum number of retries for failed outgoing messages
MDNURL None Return URL for receiving asynchronous MDNs from partners.
ASYNCMDNWAIT 30 Number of minutes to wait for asynchronous MDNs after which mes-

sage will be marked as failed.
MAXARCHDAYS 30 Number of days files and messages are kept in storage.

4.3 Quick-start Guide

Now that we have completed installation and configuration of pyAS2, we are ready to start transferring files.

Let’s get started by sending a signed and encrypted file from one pyAS2 server P1 to another pyAS2 server P2. Do
note that these two are separate installations of pyAS2.

4.3.1 Installing the Servers

Create a Django project called P1 and follow the installation guide and run python manage.py
runas2server to start P1 at http://localhost:8080/pyas2/

12 Chapter 4. Table of Contents:

http://localhost:8080/pyas2/

pyAS2 Documentation, Release 0.4.0

Create one more Django project called P2 and follow the same installations instructions, however now we will need
to change the pyAS2 port as P1 is using the default port. To do this update the port to 8081 in the global settings and
run python manage.py runas2server to start P2 at http://localhost:8081/pyas2/

4.3. Quick-start Guide 13

http://localhost:8081/pyas2/

pyAS2 Documentation, Release 0.4.0

4.3.2 Creating the certificates

We need to generate a Public and Private key pair each for the two servers. P1 uses its private key to sign the message
which is verified by P2 using P1's public key. P1 uses the P2's public key to encrypt the message which is
decrypted by P2 using its private key.

To generate the public and private key pair use the below commands

$ openssl req -x509 -newkey rsa:2048 -keyout P1_private.pem -out P1_public.pem -days
→˓365
Generating a 2048 bit RSA private key
.....+++
..
→˓..........+++
writing new private key to 'P1_private.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:IN

(continues on next page)

14 Chapter 4. Table of Contents:

pyAS2 Documentation, Release 0.4.0

(continued from previous page)

State or Province Name (full name) [Some-State]:Karnataka
Locality Name (eg, city) []:Bangalore
Organization Name (eg, company) [Internet Widgits Pty Ltd]:P1
Organizational Unit Name (eg, section) []:AS2
Common Name (e.g. server FQDN or YOUR name) []:p1as2
Email Address []:
$ cat P1_public.pem >> P1_private.pem

$ openssl req -x509 -newkey rsa:2048 -keyout P2_private.pem -out P2_public.pem -days
→˓365
Generating a 2048 bit RSA private key
..............................+++
..
→˓......................+++
writing new private key to 'P2_private.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.
What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:IN
State or Province Name (full name) [Some-State]:Karnataka
Locality Name (eg, city) []:Bangalore
Organization Name (eg, company) [Internet Widgits Pty Ltd]:P2
Organizational Unit Name (eg, section) []:AS2
Common Name (e.g. server FQDN or YOUR name) []:p2as2
Email Address []:
$ cat P2_public.pem >> P2_private.pem

4.3.3 Configure P1

P1 needs to be configured before it can start sending files, open the web UI and follow these instructions:

• Navigate to Configuration->Private Certificates->Add private certifcate.

• Choose the file P1_private.pem in the certificate field, enter the passphrase and save the Private Certificate.

• Next navigate to Configuration->Public Certificates->Add public certifcate.

• Choose the file P2_public.pem in the certificate field and save the Public Certificate.

• Now navigate to Configuration->Organization->Add organization.

• Set Name to P1, As2 Name to p1as2 and set the Signature and Encryption keys to P1_private.pem and
save the Organization.

• Next navigate to Configuration->Partner->Add partner.

• Set Name to P2, As2 Name to p2as2 and Target url to http://localhost:8081/pyas2/
as2receive

• Under security settings set Encrypt Message to 3des, Sign Message to SHA-1, Signature and Encryption keys
to P2_public.pem.

4.3. Quick-start Guide 15

pyAS2 Documentation, Release 0.4.0

• Under MDN settings set MDN mode to Synchronous and Request Signed MDN to SHA-1.

• Save the partner to complete the configuration.

4.3.4 Configure P2

P2 needs to be configured before it can start receiving files, open the web UI and follow these instructions:

• Navigate to Configuration->Private Certificates->Add private certifcate.

• Choose the file P2_private.pem in the certificate field, enter the passphrase and save the Private Certificate.

• Next navigate to Configuration->Public Certificates->Add public certifcate.

• Choose the file P1_public.pem in the certificate field and save the Public Certificate.

• Now navigate to Configuration->Organization->Add organization.

• Set Name to P2, As2 Name to p2as2 and set the Signature and Encryption keys to P2_private.pem and
save the Organization.

• Next navigate to Configuration->Partner->Add partner.

• Set Name to P1, As2 Name to p1as2 and Target url to http://localhost:8080/pyas2/
as2receive

• Under security settings set Encrypt Message to 3des, Sign Message to SHA-1, Signature and Encryption keys
to P1_public.pem.

• Under MDN settings set MDN mode to Synchronous and Request Signed MDN to SHA-1.

• Save the partner to complete the configuration.

4.3.5 Send a File

We are now read to send a file from P1 to P2, to do so follow these steps:

• Open the P1 web UI and navigate to Run->Send Message.

• Select the Organization as p1as2(P1) and Partner as p2as2(P2).

• Now select the file to send and click Send File.

• The status of the file transfer can be viewed at Messages->All Messages.

• Once file transfer is completed you will a green tick in the status column.

• We will also see a similar entry in the web UI of P2.

• We can see basic information on this screen such as Partner, Organization, Message ID and MDN.

• We can also view the MDN and Payload by clicking on the respective links.

16 Chapter 4. Table of Contents:

pyAS2 Documentation, Release 0.4.0

4.3.6 Conclusion

We have successfully demonstrated the core functionality of pyAS2 i.e. sending files from one system to another
using the AS2 protocol. For a more detailed overview of all its functionality do go through the detailed docs.

4.4 Detailed Guide

We have seen how to send a file to the partner with the basic settings. Now lets go through each of the components
of pyAS2 in greater detail. In this section we will cover topics related to configuration of partners, organizations and
certificates; sending messages and MDNs; monitoring messages and MDNs; and usage of the admin commands.

4.4.1 Organizations

Organizations in pyAS2 mean the host of the AS2 server, i.e. it is the sender when sending mes-
sages and the receiver when receiving the messages. Organizations can be managed from the web UI at
Configuration->Organizations. The following screen lists the existing organizations and also you gives
the option to create new ones. Each organization is characterized by the following fields:

Field Name Description Manda-
tory

Name The descriptive name of the organization. Yes
As2 Name The as2 identifies for this organization, must be a unique value as it identifies

the as2 host.
Yes

Email
Address

The email address for the organization. No

Encryption
Key

The Private Key used for decrypting incoming messages from trading part-
ners.

Yes

Signature
Key

The Private Key used to sign outgoing messages to trading partners Yes

4.4.2 Partners

Partners in pyAS2 mean all your trading partners with whom you will exchanges messages, i.e. they are the receivers
when you send messages and the senders when you receive messages. Partners can be managed from the web UI at
Configuration->Partners. The following screen lists the existing partners and also you gives the option to
search them and create new ones. Each partner is characterized by the following fields:

4.4. Detailed Guide 17

pyAS2 Documentation, Release 0.4.0

General Settings

Field Name Description Manda-
tory

Name The descriptive name of the partner. Yes
As2 Name The as2 identifies for this partner as communicated by the partner. Yes
Email
Address

The email address for the partner. No

Target Url The HTTP/S endpoint of the partner to which files need to be posted. Yes
Subject The MIME subject header to be sent along with the file. Yes
Content Type The content type of the message being transmitted, can be XML, X12 or EDI-

FACT.
Yes

Authentication Settings

Use these settings if basic authentication has been enabled for the partners AS2 server.

Field Name Description Manda-
tory

Enable
Authentication

Check this option to enable basic AUTH. No

Http auth
user

User name to access the partners server. No

Http auth
pass

Password to access the partners server. No

HTTPS Local
CA Store

Use this for HTTPS endpoints where the partners SSL certificate has been signed
by an unknown CA. Select the CA certificate here

No

Security Settings

Field Name Description Manda-
tory

Compress
Message

Check this option to enable AS2 message compression. Yes

Encrypt
Message

Select the algorithm to be used for encrypting messages, defaults to None. No

Encryption
Key

Select the Public Key used for encrypting the outbound messages to this partner. No

Sign
Message

Select the hash algorithm to be used for signing messages, defaults to None. incom-
ing messages from trading partners.

No

Signature
key

The Public Key used to verify inbound signed messages and MDNs from this
partner

No

18 Chapter 4. Table of Contents:

pyAS2 Documentation, Release 0.4.0

MDN Settings

Field Name Description Manda-
tory

Request MDN Check this option to request MDN for outbound messages to this part-
ner.

Yes

Mdn mode Select the MDN mode, defaults to Synchronous No
Request Signed
MDN

Select the algorithm to be used in case signed MDN is to be returned. No

Advanced Settings

Field Name Description Manda-
tory

Keep
Original
Filename

Use Original File name to to store file on receipt, use this option only if you are sure
partner sends unique names.

No

Command
on Message
Send

OS Command executed after successful message send, replacements are $filename,
$sender, $recevier, $messageid and any message header such as $Subject

No

Command
on Message
Receipt

OS Command executed after successful message receipt, replacements are
$filename, $fullfilename, $sender, $recevier, $messageid and any
message header such as $Subject.

No

4.4.3 Certificates

The AS2 protocol strongly encourages the use of RSA certificates to sign and encrypt messages for enhanced security.
A signed and encrypted message received from your partner ensures message repudiation and integrity. The RSA
certificate consists of a public key and a private key which are together used for encrypting, decrypting, signing and
verifying messages.

Generating Certificates

When you set up a new AS2 server you will need to generate a Public/Private key pair. The private key will be added
to your server and the public key needs to be shared with your trading partners.

One of the ways of generating a certificate is by using the openssl command line utility, the following command
needs to be used:

$ openssl req -x509 -newkey rsa:2048 -keyout private.pem -out public.pem -days 365
Generating a 2048 bit RSA private key
.....+++
..
→˓..........+++
writing new private key to 'private.pem'
Enter PEM pass phrase:
Verifying - Enter PEM pass phrase:

You are about to be asked to enter information that will be incorporated
into your certificate request.

(continues on next page)

4.4. Detailed Guide 19

pyAS2 Documentation, Release 0.4.0

(continued from previous page)

What you are about to enter is what is called a Distinguished Name or a DN.
There are quite a few fields but you can leave some blank
For some fields there will be a default value,
If you enter '.', the field will be left blank.

Country Name (2 letter code) [AU]:IN
State or Province Name (full name) [Some-State]:Karnataka
Locality Name (eg, city) []:Bangalore
Organization Name (eg, company) [Internet Widgits Pty Ltd]:Name
Organizational Unit Name (eg, section) []:AS2
Common Name (e.g. server FQDN or YOUR name) []:as2id
Email Address []:
$ cat public.pem >> private.pem

The above commands will generate a PEM encoded private key called private.pem and a PEM encoded public
key called public.pem.

Private Certificates

Private Certificates are used for signing outbound messages to your partners and decrypting incoming mes-
sages from your partners. We can manage them in pyAS2 from the web UI at Configuration->Private
Certificates. The following screen lists all your private certificates and lets you add new ones. Each Private
Certificates is characterized by the following fields:

Field Name Description Manda-
tory

Certificate Select the PEM encoded1 private key file2. Yes
Local CA Store In case the certificate has been signed by an unknown CA then select the

CA certificate here.
No

Certificate
passphrase

The pass phrase entered at the time of the certificate generation. Yes

Public Certificates

Public Certificates are used for verifying signatures of inbound messages and encrypting outbound messages
to your partners. The public key file will be shared by your partner. We can manage them in pyAS2 from the web UI
at Configuration->Public Certificates. The following screen lists all your public certificates and lets
you add new ones. Each Public Certificates is characterized by the following fields:

Field Name Description Manda-
tory

Certificate Select the PEM encoded1 public key file. Yes
Local CA Store In case the certificate has been signed by an unknown CA then select

the CA certificate here.
No

Verify Certificate
New in version 0.2

Uncheck this option to disable certificate verification at the time of
signature verification.

No

1 pyAS2 supports only PEM encoded certificates.
2 The private key file must contain both the private and public parts of the RSA certificate.

20 Chapter 4. Table of Contents:

pyAS2 Documentation, Release 0.4.0

4.4.4 The Data Directory

The Data Directory is a file system directory that stores certificates, logs, archives, sent and received files. The
location of this directory is set to the Django project folder by default. We can also change this directory by updating
the DATADIR setting in the pyAS2 global settings. The structure of the directory is below:

{DATA DIRECTORY}
certificates

P1_public.pem
P2_private.pem

logging
cherrypy_error.log
pyas2.log
pyas2.log.2015-09-08

messages
__store

mdn
received
sent

20150908
20150908115337.7244.44635@Abhisheks-MacBook-Air.local.mdn
20150908121942.7244.71894@Abhisheks-MacBook-Air.local.mdn

20150913
20150913071324.20065.47671@Abhisheks-MacBook-Air.local.mdn
20150913083125.20403.32480@Abhisheks-MacBook-Air.local.mdn

payload
received

20150908
20150908115458.7255.98107@Abhisheks-MacBook-Air.local
20150908121933.7343.83150@Abhisheks-MacBook-Air.local

20150913
20150913071323.20074.48016@Abhisheks-MacBook-Air.local
20150913083125.20475.14667@Abhisheks-MacBook-Air.local

sent
p1as2

outbox
p2as2

p2as2
inbox

p1as2
20150908115458.7255.98107@Abhisheks-MacBook-Air.local.msg
20150913083125.20475.14667@Abhisheks-MacBook-Air.local.msg

certificates

The certificates directory stores all the PEM encoded public and private key files.

logging

The logging directory stores the server error logs and application logs. The server error logs are saved as
cherrypy_error.log and the application logs are saved as pyas2.log.

4.4. Detailed Guide 21

pyAS2 Documentation, Release 0.4.0

__store

The __store directory under the messages directory archives the payloads and MDNs. The payloads directory
saves the sent and received files in the corresponding sub-folders and the mdn directory also does the same for sent
and received MDNs. The payloads and MDNs in the sent or received folders are further saved under sub-folders for
each day named as YYYYMMDD.

inbox

The inbox directory stores files received from your partners. The path of this directory is {DATA DIRECTORY}/
{ORG AS2 ID}/inbox/{PARTNER AS2 ID}. We need to take this location into account when integrating
pyAS2 with other applications.

outbox

The outbox folder works in conjecture with the send-daemon process. The daemon process monitors all the outbox
folder and will trigger a transfer when a file becomes available. The path of this directory is {DATA DIRECTORY}/
{PARTNER AS2 ID}/outbox/{ORG AS2 ID}.

4.4.5 Send & Receive Messages

We have so far covered all the topics related to configuration of the pyAS2 server. Now we will see how to use these
configurations to send messages to your trading partners using the AS2 protocol. We can send files using any of the
following techniques:

Send Messages From the Web UI

The simplest method for sending messages to your trading partner is by using the Web UI. This method is generally
used for testing the AS2 connection with your trading partner. The steps are as follows:

• Navigate to Run->Send Message.

• Select the sender(Organization), the receiver(Partner) and choose the file to be transmitted.

• Click on Send File to initiate the file transfer and monitor the transfers at Messages->Outbound
Messages.

22 Chapter 4. Table of Contents:

pyAS2 Documentation, Release 0.4.0

Send Messages From the Command-Line

The next method for sending messages involves the pyAS2 admin command sendas2message. The command is
invoked from the shell prompt and can be used by other applications to invoke an AS2 file transfer. The command
usage is as follows:

$ python manage.py sendas2message --help
Usage: python manage.py sendas2message [options] <organization_as2name partner_
→˓as2name path_to_payload>

Send an as2 message to your trading partner

Options:
--delete Delete source file after processing
-h, --help show this help message and exit

The mandatory arguments to be passed to the command include organization_as2name i.e. the AS2 Identifier
of this organization, partner_as2name i.e. the AS2 Identifier of your trading partner and path_to_payload
the full path to the file to be transmitted. The command also lets you set the --delete option to delete the file once
it is begins the transfer. A sample usage of the command:

$ python manage.py sendas2message p1as2 p2as2 /Users/abhishekram/Downloads/
→˓updateInvoice.txt

Send Messages Using the Send-Daemon

The last method for sending messages involves the pyAS2 admin command runas2daemon. The command once
started in the background monitors the data directory and when a file is available in a partner’s outbox folder then the
transfer is initiated for that file.

4.4. Detailed Guide 23

data-dir.html#outbox

pyAS2 Documentation, Release 0.4.0

$ python manage.py runas2daemon
20150915 04:23:37 INFO : Starting PYAS2 send daemon.
20150915 04:23:37 INFO : Process exisitng files in the directory.
20150915 04:23:37 INFO : PYAS2 send daemon started started.
20150915 04:23:37 INFO : Watching directory /opt/pyapp/djproject/messages/
→˓MTSAS2Tst/outbox/pyas2test
20150915 04:23:37 INFO : Watching directory /opt/pyapp/djproject/messages/
→˓likemindsas2/outbox/pyas2test

The above example runs the admin command in the foreground, however in a production environment it should be
started in the background and also OS specific configuration should be added to start this process on system startup.

Receive Messages

In order to receive files from your trading partners they need to post the AS2 message to the URL http://
{hostname}:{port}/pyas2/as2receive. The configuration of the Organization, Partner and Certificates
need to be completed for successfully receiving messages from your trading partner. Once the message has been
received it will be placed in the organizations inbox folder.

4.4.6 Send & Receive MDNs

Message Disposition Notifications or MDNs are return receipts used to notify the sender of a message of any of the
several conditions that may occur after successful delivery. In the context of the AS2 protocol, the MDN is used to
notify if the message was successfully processed by the receiver’s system or not and in case of failures the reason for
the failure is sent with the MDN.

MDNs can be transmitted either in a synchronous manner or in an asynchronous manner. The synchronous transmis-
sion uses the same HTTP session as that of the AS2 message and the MDN is returned as an HTTP response message.
The asynchronous transmission uses a new HTTP session to send the MDN to the original AS2 message sender.

Send MDNs

The choice of whether to send an MDN and its transfer mode is with the sender of the AS2 message. The sender
lets us know what to do through an AS2 header field. In case the partner requests a synchronous MDN no action is
needed as pyAS2 takes care of this internally, however in the case of an asynchronous MDN the admin command
sendasyncmdn needs to be run to send the MDN to the trading partner.

The command {PYTHONPATH}/python {DJANGOPROJECTPATH}/manage.py sendasyncmdn should
be scheduled every 10 minutes so that pyAS2 sends any pending asynchronous MDN requests received from your
trading partners.

Receive MDNs

The choice of whether or not to receive MDN and its transfer mode is with us. The MDN Settings for the partner
should be used to specify your preference. In case of synchronous mode pyAS2 processes the received MDN without
any action from you.

In the case of asynchronous mode we do need to take care of a couple of details to enable the receipt of the MDNs.
The global setting MDNURL should be set to the URL http://{hostname}:{port}/pyas2/as2receive
so that the trading partner knows where to send the MDN. The other setting of note here is the ASYNCMDNWAIT that
decides how long pyAS2 waits for an MDN before setting the message as failed so that it can be retried. The admin
command sendasyncmdn makes this check for all pending messages so it must be scheduled to run regularly.

24 Chapter 4. Table of Contents:

data-dir.html#inbox
partners.html#mdn-settings

pyAS2 Documentation, Release 0.4.0

4.4.7 Monitoring

pyAS2 maintains a log of all inbound and outbound messages exchanged with your trading partners. The logs can be
accessed from the web UI Messages menu. The menu has options to list messages, search messages and MDNs.
pyAS2 saves message details such as status, message ID, sender, receiver, payload; and MDN details such as message
ID, original message ID and mode.

List Messages

The list of all sent and received messages can be viewed from the web UI at Messages->All Messages. The
screen lists all messages ordered by timestamp so that the latest message is first on the list. We can further list only
inbound messages at Messages->Inbound Messages and outbound messages at Messages->Outbound
Messages.

Search Messages

pyAS2 lets you search for messages based on a number of criteria. The search screen can be accessed at
Messages->Search Messages. The following filter criteria are available:

Field Name Description
Datefrom Messages processed after this date will be included in the search results.
Dateuntil Messages processed before this date will be included in the search results.
Organization Messages that belong to this organization will be included.
Partner Messages that belong to this partner will be included.
Direction Filter by the direction of the AS2 message, can be inbound or outbound.
Status Filter by the status of the AS2 message.
Message ID Filter by the AS2 message ID of the message.
Payload Name Filter by the file name of the sent/received message.

Search MDNs

pyAS2 also lets you search for MDNs for messages based on a number of criteria. The search screen can be accessed
at Messages->Search MDNs. The following filter criteria are available:

Field Name Description
Datefrom MDNs processed after this date will be included in the search results.
Dateuntil MDNs processed before this date will be included in the search results.
Organization MDNs that belong to this organization will be included.
Partner MDNs that belong to this partner will be included.
MDN mode Filter by the MDN mode, can be synchronous or asynchronous.
Status Filter by the status of the MDN.
MDN Message ID Filter by the message ID of the MDN.
Original Message ID Filter by the message ID of the original message for which it is an MDN.

4.4.8 Admin Commands

pyAS2 provides a set of Django manage.py admin commands that perform various functions. We have already seen
the usage of some of these commands in the previous sections. Let us now go through the list of available commands:

4.4. Detailed Guide 25

pyAS2 Documentation, Release 0.4.0

runas2server

The runas2server command starts the AS2 server which includes both the web UI and the AS2 receiver. The
command does not take any arguments. The command should be started in the background and also a schedule should
be added to run the command on system startup.

runas2daemon

The runas2daemon command starts the directory monitoring process. The process monitors all the partner inbox
folders and triggers a file transfer when file becomes available. The command should be started in the background and
also a schedule should be added to run the command on system startup. The process needs to be restarted when a new
partner is created so that its inbox can be added to the monitored directory list.

sendas2message

The sendas2message command triggers a file transfer, it takes the mandatory arguments organization id, partner
id and the full path to the file to be transferred. The command can be used by other applications to integrate with
pyAS2.

sendasyncmdn

The sendasyncmdn command performs two functions; it sends asynchronous MDNs for messages received from
your partners and also checks if we have received asynchronous MDNs for sent messages so that the message status
can be updated appropriately. The command does not take any arguments and should be run on a repeating schedule.

retryfailedas2comms

The retryfailedas2comms command checks for any messages that have been set for retries and then retriggers
the transfer for these messages. The command does not take any arguments and should be run on a repeating schedule.

cleanas2server

The cleanas2server command is a maintenance command and it deletes all DB objects, logs and files older that
the MAXARCHDAYS setting. It is recommended to run this command once a day using cron or windows scheduler.

4.4.9 Email Notifications

We can configure pyAS2 to send email reports in case of errors encountered while sending or receiving AS2 messages
with your trading partner. To use this feature just set the relevent information in your project’s settings.py module:

MANAGERS = (#bots will send error reports to the MANAGERS
('name_manager', 'myemailaddress@gmail'),
)

EMAIL_HOST = 'smtp.gmail.com' #Default: 'localhost'
EMAIL_PORT = '587' #Default: 25
EMAIL_USE_TLS = True #Default: False
EMAIL_HOST_USER = 'username' #Default: ''. Username to use for the SMTP server
→˓defined in EMAIL_HOST. If empty, Django won't attempt authentication.
EMAIL_HOST_PASSWORD = '*******' #Default: ''. PASSWORD to use for the SMTP server
→˓defined in EMAIL_HOST. If empty, Django won't attempt authentication.

(continues on next page)

26 Chapter 4. Table of Contents:

https://docs.djangoproject.com/en/1.8/ref/settings/

pyAS2 Documentation, Release 0.4.0

(continued from previous page)

SERVER_EMAIL = 'botserrors@gmail.com' #Sender of bots error reports.
→˓Default: 'root@localhost'
EMAIL_SUBJECT_PREFIX = '' #This is prepended on email subject.

4.5 Release History

4.5.1 0.4.0 - 2017-01-27

• Cleaner handling of signature verifications

• Added test cases for sterling b2b integrator message and mdn

• Set max_length for file fields to manage long folder names.

4.5.2 0.3.8 - 2017-01-09

• Give option to download certs from the admin.

4.5.3 0.3.7 - 2017-01-09

• Use a function to get the certificate upload_to.

4.5.4 0.3.6 - 2017-01-05

• Added view for downloading certificates from the admin.

4.5.5 0.3.5 - 2017-12-20

• Renewed the certificates used in the django tests.

4.5.6 0.3.4 - 2017-08-17

• Add migration to the distribution.

4.5.7 0.3.3 - 2017-04-04

• Use pagination when listing messages in the GUI, also do not use Datatables.

• Set the request MDN field default value to False.

4.5.8 0.3.2 - 2017-03-07

• Freeze versions of django and CherryPy in setup.py.

4.5. Release History 27

pyAS2 Documentation, Release 0.4.0

4.5.9 0.3.1 - 2016-10-03

• Fixed pagination issue where it was showing only 25 messages and mdns.

• Added the admin command cleanas2server for deleting old data and logs.

4.5.10 0.3.0 - 2016-06-28

• Added django test cases for testing each of the permutations as defined in RFC 4130 Section 2.4.2

• Code now follows the pep-8 standard

• Django admin commands now use argparse instead or optparse

4.5.11 0.2.3 - 2016-04-20

• Added functionality to customize MDN messages at organization and partner levels.

4.5.12 0.2.2 - 2015-10-12

• Fixes to take care of changes in Django 1.9.x

4.5.13 0.2.1 - 2015-10-12

• Updated installation and upgrade documentation.

4.5.14 0.2 - 2015-10-11

• Added option to disable verification of public certificates at the time of signature verification.

• Fixed bug in the send daemon.

• Added debug log statements.

• Added some internationlization to model fields.

4.5.15 0.1.2 - 2015-09-07

• Created readthedocs documentation.

• Fixed bug where inbox and outbox folders were not created on saving partners and orgs.

• Fixed bug where MDN search was failing due to orphaned MDNs.

4.5.16 0.1.1 - 2015-09-04

• Increased the max length of MODE_CHOICES model field.

• Detect Signature Algorithm from the MIME message for outbound messages.

28 Chapter 4. Table of Contents:

pyAS2 Documentation, Release 0.4.0

4.5.17 0.1 - 2015-04-29

• Initial release.

4.5. Release History 29

	Features
	Dependencies
	Installation
	Table of Contents:
	Installation
	Configuration
	Quick-start Guide
	Detailed Guide
	Release History

